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On the Sign of the Difference 7r( x) - li( x) 

By Herman J. J. te Riele 

Dedicated to Daniel Shanks on the occasion of his 70th birthday 

Abstract. Following a method of Sherman Lehman we show that between 6.62 X 10370 and 
6.69 x 10370 there are more than 10180 successive integers x for which 7T(x) - li(x) > 0. 
This brings down Sherman Lehman's bound on the smallest number x for which T(x) - li(x) 
> 0, namely from 1.65 x 101165 to 6.69 x 10370. Our result is based on the knowledge of the 
truth of the Riemann hypothesis for the complex zeros /3 + iy of the Riemann zeta function 
which satisfy IJI < 450,000, and on the knowledge of the first 15,000 complex zeros to about 
28 digits and the next 35,000 to about 14 digits. 

1. Introduction. The prime number theorem, proved by Hadamard and de la 
Vallee Poussin in 1896, states that 7T(x) li(x), as x -x oc, where 7T(x) is the 
number of primes < x and li(x) = Jo dt/logt. This result tells us that the ratio 
vr(x)/li(x) tends to 1 as x -x c, but it does not say anything about the difference 
,g(x) - 1(x). This difference is known to be negative for all values of x for which 
iT(x) has been computed exactly ([3]; also cf. Bateman's remarks on p. 943 of [4]). 
However, already in 1914, Littlewood [5] proved that s7(x) - li(x) changes sign 
infinitely often. More precisely, he proved the existence of a number K > 0 such 
that 

log(x) { 7T(x) - li(x)} 

x 1/21og (log(log(x))) 

is greater than K for arbitrarily large values of x and less than -K for arbitrarily 
large values of x. In 1955, Skewes [11] obtained an upper bound for the smallest x 
for which s7(x) > li(x), namely exp(exp(exp(exp(7.705)))). In 1966, Sherman Leh- 
man [10] brought this bound down considerably by proving that between 1.53 x 
101165 and 1.65 x 101165 there are more than 105?? successive integers for which 
7T(x) > 11(x). Sherman Lehman's method is described in Section 2. In order to prove 
his result, Sherman Lehman performed two major computations, namely a verifica- 
tion of the Riemann hypothesis for the first 250,000 zeros of the Riemann zeta 
function, i.e., for the complex zeros /B + iy for which Iyj < 170,571.35, and the 
computation of the zeros 2 + iy of the Riemann zeta function for which 0 < y < 
12,000 to about 7 decimal places. 
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In Section 3 we will bring down Sherman Lehman's bound by showing that there 
are more than 10180 successive integers x between 6.62 x 10 370 and 6.69 x 10 370 for 
which v (x) > 11(x). To that end, we use the knowledge of the truth of the Riemann 
hypothesis for the complex zeros /3 + iy with IjI < 450,000 [9] and the knowledge of 
the first 15,000 complex zeros of the Riemann zeta function with an accuracy of 
about 28 digits [8] and the next 35,000 with an accuracy of about 14 digits. An error 
analysis is given which shows that our result could also have been obtained with a 
few digits less accuracy in the zeros of the Riemann zeta function. 

In Section 3, we denote the imaginary part of the jth complex zero of the 
Riemann zeta function by yj (Yi = 14.13..., y2 = 21.02 ..., etc.). 

2. Sherman Lehman's Method. In [10], Sherman Lehman derived an explicit 
formula for ue - u/2{ 7T(e u) - li(e u)}, averaged by a Gaussian kernel. He expressed it 
in the following 

THEOREM [10]. Let A be a positive number such that /3= 2 for all the zeros 
p = /3 + iy of the Riemann zeta function T(s) with 0 < y < A. Let a, -l, and X be 
positive numbers such that w - - > 1 and the conditions 

(2.1) 4A/w < a < A2 

and 

(2.2) 2A/a < - < w12 
hold. Let 

(2 .3) K( y): = (alX2v7 ) 1/2 e_ - Y2 /2. 

Then for 27re < T < A, 

(2.4) J K(u - w)ue-/2{f7(eu) - li(eu)} du = -1 + H(T,a,c) + R, 

where 

(2.5) H(T, a, w)= - ey2/2a 
O<IYI- TP 

and 
6 

JRI E E Si 
i=1 

with 

S, = 3.05/(co - -q), S2 = 4(w + -q)exp(-(w - -q)/6), 

S3 = 2 exp(-a q2/2)/(- (27Ta)1/2), S4 = 0.08a1/2exp(-a 2/2), 

S5 = exp(-T2/2a) a2log( 2T) + 8lT + and 

6= AlogAexp(-A2/2a +?(w + -q)/2)(4a -1/2 + 15s). 
If the Riemann hypothesis holds true, then conditions (2.1) and (2.2) and the last term 
(S6) in the estimate for R may be omitted. Z 

Sherman Lehman first looked for places where on heuristic grounds s7(x) could be 
expected to exceed li(x), namely, in the neighborhood of values of u for which the 
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sum 

(2.6) ST(U):= - E -, 
O<IyI T P 

which is the sum in (2.5) with the factor e -Y2/2a omitted, is somewhat larger than 1. 
He found three values of u, namely, 

727.952, 853.853 and 2682.977, 

for which Slo(u) is approximately 0.96. Next, after experiments with values of T 
greater than 1000, he finally concentrated on the third case. He computed 

H(12000, 107, 2682 + 16005 x 2-14) = 1.00201, 

and, moreover, he was able to prove that the computed value of H could not exceed 
the true value by more than 6.8 x 10-4, so that 

H(12000, 107, 2682 + 16005 x 2-14) > 1.00133. 

By applying his theorem with A = 170,000 and -q = 0.034, and by deriving small 
upper bounds for ISij, i = 1, ... ., 6, he found that 

(2.7) f K(u - ) ue -u/2 7(eu) - li(eu)} du > 0.00006. 

He concluded that, because of the positivity of K (defined in (2.3)), there must be a 
value of u between X - - and X + - where nT(eu) - li(eu) > 0. Moreover, since 

ff'1.K(u) du = 1, it follows that 

(2.8) | K(u - o)ue u/2{e u/2/U} di < 1, 

so that, by combination of (2.7) and (2.8), it follows that for some value of u 
between X - r1 and X + -q we have 

v7(eu) - li(eu) > 0.00006eu/2/u > 105?? 

(since X = 2682.9768 ... and - = 0.034). This implies that there are more than 10500 

(in fact, probably many more than 2 X 105?) successive integers x between 1.53 X 
101165 and 1.65 X 101165 for which s7(x) > li(x). Sherman Lehman suggested that 
one might prove a similar result in the neighborhood of e 853.853 if enough zeros of 
c(s) were calculated. We have followed this suggestion, and the results are described 
in the next section. 

3. Applying Sherman Lehman's Theorem Near exp(853.853). In our attempt to 
show that H(T, a, co) > 1, for co close to 853.853, we have chosen, after several 
experiments, 

(3.1) A = 450,000, a = 2 X 108, ' = 0.0045, 
(3.1) T = 750000= 40433.6873854..., X = 853.852286. 

The truth of the Riemann hypothesis for all the complex zeros p = /3 + iy of '(s) 

with 1yI < 450,000 follows already from [9]. In fact, one may choose for A any value 
not exceeding 545,439,823.215 ... (= 1.5 x 109, cf. [7]), but this is much more than is 
actually needed for our purpose. The choice T = -y5 implies the necessity to 
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know yi for i = 1,... ,50,000 to sufficient accuracy. The first 15,000 y,'s were 
known already with an accuracy of about 28 digits from computations carried out in 
1979 [8]. The next 35,000 yi's were computed with the help of the so-called 
Riemann-Siegel asymptotic formula for the function Z(t) (whose real zeros coincide 
with the imaginary parts of the zeros /3 + iy of the Riemann zeta function D(s) 
which have /3 = 2) truncated after four terms. According to Gabcke [2, p. 5], the 
absolute value of the error in the computation of Z(t) caused by this truncation is 
bounded above by 0.031 x t-225. The FORTRAN-function DZ(DT) on pp. 28--29 
of [6] shows the details of our implementation of this Riemann-Siegel formula. 
Together with the y1, for i = 15,001,.. ., 50,000, we also computed in the same way 

yi for i = 10,001,... , 15,000, as a check. 
The yi, i = 10,001,... , 50,000, were computed in two steps. First, they were 

separated in the usual way (cf. [1]). This yielded numbers y, and j. such that 

< Y1 < YY1? and Z(y1) x Z(Y) < 0. 

Next, with the aid of the zero-finding IMSL-routine ZBRENT, which uses a 
combination of linear interpolation, inverse quadratic interpolation and bisection, 
the approximations yi and - to yi were improved until Ye - < 10-9 and Z(y1) x 

Z(Yl) < 0, thus yielding an approximation y1* to -yi for which 

(3.2) | Yi* - Yi I < 10-9. 

The error due to the use of the truncated asymptotic formula for Z(t) is bounded 
above by 3.2 x 10-11 (this number is obtained by substituting the smallest value of 
-y used, namely y1oooi = 9878.6..., in Gabcke's upper bound given above). All the 
computations were carried out in double precision on the CYBER 750 computer of 
SARA (with an accuracy of about 28 digits), so that the truncation and rounding 
errors are small compared with the accuracy (3.2) in Y-. The "check" values yi, 
i= 10,001,..., 15,000, were compared with the 28D approximations already com- 
puted in [8], and all the actual errors were bounded above by 10-12. The time needed 
for the computations of yi*, i = 15,001,.. ., 50,000, was about one hour CPU-time. 

With these yi* we computed the following approximation H* to H: 

(3.3) H * (y50o oo, 2 x 10 8, 853.852286) = 1.0240109 .... 

The error H - H*1 may be bounded from above as follows. Since the complex 
zeros of the Riemann zeta function appear in complex conjugate pairs, it follows 
from (2.5) that 

(3-4) H(T, as w) -E t(y) 
O<y T 

where 

t(y) = eY2/2acos(w-y) + 2ysin(wy) 

By the mean-value theorem, we have 
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For t'(-y) we have 

t'(y) = CT2/2a coS(woy)(2-y - y/a) - sin(2y)(w + 2y2/a) 

0.25 + _y 

2y{cos(coy) + 2ysin(w-y)} 

(0.25 + 1Y2') 
so that, since y < a (cf. (3.1), and (3.6) below), 

Jt'(y)I <e _72/2[ 2cy + o + 2y2/a+ 2y(1 + 2y) 

0.25+ y2 
(025+y2)2J 

< e-Y 2/2 2w +W 2 2+ + ? 
2 a 73+' 

From the (in)equalities 

(3.6) 14 < Y1y < -y < y50s < 40434, o < 854, a= 2 X 108, 

it follows that 

(3.7) t'(y)I < 1770 

From (3.1), (3.5), (3.7) and the errors in yi*, we deduce 

15,000 50,000 

H - H* t jt(yi) - t(yi*) + E It( y) - t(YI*)I 
i= 15,001 

15,000 50,000 

= E IYi - Yi* Jt'(y3)j + E IYi - yl*It() 
i1= 1 i= 15,001 

15,000 1770 50,000 1770 
<10o-22 E ? lo~ - 

i=1 Yi i= 15,001 7 

< 10-22 x 15,000 x 
1770 

+ 10-9 x 35,000 x 
1770 

14 14040 

< S x 10-6. 

The many computations of H* needed to find (3.1) and (3.3) were carried out on 
the CYBER 205 vector computer of SARA, which is very suitable for such very long 
sums. One H*-computation consumed about one second CPU-time on this CYBER. 

For the numbers Si, i = 1,...,6, in Sherman Lehman's theorem, we found 

S, I < 0.0036, IS21 < 10-58, IS31 < 10-100, 

IS41 < 10-100, IS51 < 0.0058, IS61 < 10-28. 

With these inequalities and (3.3), we conclude from Sherman Lehman's theorem 
that, for w = 853.852286 and - = 0.0045, we have 

f+ K(u - w)ue-ul2t 7T(eu) - li(eu)} du 

> -1 + 1.024010 - 5 x 10-6 - 0.0036 - 0.0058 > 0.0146. 
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Proceeding in the same way as Sherman Lehman did (cf. Section 2), we find that 
between X - - and X + - there is a u such that 

7T(eu) - li(eu) > 0.0146 X e ,/2/u > 10110. 

This implies that there are more than 10180 successive integers x between e - = 
6.627... x<10370 and ew+? = 6.687... X10370 for which g(x) > li(x). This proves 
the result announced in Section 1. 

Remark. We have done some experiments in the neighborhood of e727952, the 
smallest of the three candidates given by Sherman Lehman. These experiments 
indicate that for the choice of the parameters: T = 4.105, a = 1010, and A = 3.106, 

it might be possible to prove the existence of another interval for which 7(x) - li(x) 
> 0. This would require computing all the zeros of the Riemann zeta function with 
imaginary part below 4.105 to sufficient accuracy: about ten times as many zeros as 
we used. 
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